GABA affinity shapes IPSCs in thalamic nuclei.

نویسندگان

  • Claude M Schofield
  • John R Huguenard
چکیده

Precise neural inhibition in thalamocortical circuits is required for the generation of sleep spindles and suppression of hypersynchrony associated with epileptiform activity. Accordingly, the time course of GABA(A) receptor-mediated IPSC events is an important parameter influencing the strength of inhibitory signaling. In the thalamus, two distinct types of IPSC kinetics are observed: thalamocortical relay neurons in the ventrobasal nucleus (VB) exhibit a fast decaying IPSC, whereas neurons in the adjacent reticular nucleus (RTN) display a long-lasting, slowly decaying IPSC. Here, we used patch-clamp electrophysiology and computational modeling to elucidate the basis for IPSC kinetic heterogeneity in the thalamus. Rapid application of GABA to excised membrane patches revealed that decay kinetics were attributable to intrinsic differences in GABA(A) receptor deactivation. Examination of desensitization and gating properties revealed these to be similar in VB and RTN, with the notable lack of fast and long-lasting desensitized states in both cell types. Computational simulations demonstrate that slow GABA binding and unbinding rates could reproduce the characteristic long-lasting IPSCs in RTN cells. These results indicate that within thalamic circuits, a powerful diversity of inhibitory function can result from simple differences in underlying GABA(A) receptor affinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intact synaptic GABAergic inhibition and altered neurosteroid modulation of thalamic relay neurons in mice lacking delta subunit.

Robust GABA-mediated inhibitory postsynaptic currents (IPSCs) in neurons of the thalamic relay (TC) nuclei are important in sustaining oscillatory activity within thalamic and thalamocortical circuits. The biophysical properties and pharmacological sensitivities of these IPSCs both depend on the subunit combination of postsynaptic gamma-aminobutyric acid-A (GABA(A)) receptors. Recombinant GABA(...

متن کامل

Intact Fast Synaptic GABAergic Inhibition and Altered Neurosteroid Modulation of Thalamic Relay Neurons in Mice Lacking the Subunit

Robust GABA-mediated inhibitory postsynaptic currents (IPSCs) in neurons of the thalamic relay (TC) nuclei are important in sustaining oscillatory activity within thalamic and thalamocortical circuits. The biophysical properties and pharmacological sensitivities of these IPSCs both depend on the subunit combination of postsynaptic GABAA receptors. Recombinant GABAA receptors containing the subu...

متن کامل

New intrathalamic pathways allowing modality-related and cross-modality switching in the dorsal thalamus.

Transmission through the dorsal thalamus involves nuclei that convey different aspects of sensory or motor information. Cells in the dorsal thalamus are strongly inhibited by the GABAergic cells of the thalamic reticular nucleus (TRN). Here we show that stimulation of cells in specific dorsal thalamic nuclei evokes robust IPSCs or IPSPs in other specific dorsal thalamic nuclei and vice versa. T...

متن کامل

Alterations in GABA(A) receptor mediated inhibition in adjacent dorsal midline thalamic nuclei in a rat model of chronic limbic epilepsy.

There is evidence that the dorsal midline thalamus is involved in the seizures of limbic epilepsy. However, little is known about the inhibitory synaptic function in this region. In the present study, inhibitory postsynaptic currents (IPSCs) mediated by GABA(A) receptors were recorded from the mediodorsal (MD) and paraventricular (PV) nuclei from control and epileptic animals. In the MD, the sp...

متن کامل

Intact Synaptic GABAergic Inhibition and Altered Neurosteroid Modulation of Thalamic Relay Neurons in Mice Lacking Subunit

Porcello, Darrell M., Molly M. Huntsman, Robert M. Mihalek, Gregg E. Homanics, and John R. Huguenard. Intact synaptic GABAergic inhibition and altered neurosteroid modulation of thalamic relay neurons in mice lacking subunit. J Neurophysiol 89: 1378 –1386, 2003. First published December 4, 2002; 10.1152/jn.0899.2002. Robust GABA-mediated inhibitory postsynaptic currents (IPSCs) in neurons of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 30  شماره 

صفحات  -

تاریخ انتشار 2007